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Abstract 
This study investigates various mathematical models to ascertain their suitability for predicting 

gorilla population dynamics over three decades in Cross River State, Nigeria. Models including 

linear, quadratic, exponential, logarithmic, power law, logistic growth, polynomial, sinusoidal, 

and piecewise linear were evaluated based on their R2 (coefficient of determination) and SSE 

(sum of squared errors) metrics. The analysis, conducted using historical gorilla population 

data from 1990 to 2020, aimed to identify the model that best captures the observed growth 

patterns and fluctuations in the gorilla population. Among the models tested, the piecewise 

linear model emerged as the most effective, achieving the highest R2 of 0.966 and the lowest 

SSE of 71,866.8. This model's segmented approach accommodates shifts in growth rates over 

distinct time intervals, reflecting real-world ecological dynamics influenced by environmental 

factors and conservation efforts. In contrast, models such as the power law exhibited poor 

performance due to a significant overestimation of gorilla populations, highlighting their 

limited applicability in ecological studies. Understanding these dynamics through effective 

modeling not only enhances our ability to predict future population trends but also informs 

strategic conservation initiatives aimed at ensuring the long-term viability of gorilla 

populations in their natural habitats. This research underscores the importance of robust 

mathematical modeling in wildlife management and conservation decision-making processes. 

Keywords: gorilla population dynamics, mathematical modeling, ecological studies, wildlife 

conservation, piecewise linear model 
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Introduction 
Gorillas, as one of the closest relatives to humans, share not only physiological similarities but 

also complex social structures and behaviors that have long intrigued scientists. These majestic 

primates, primarily found in the forests of central Africa, are divided into two species: the 

eastern gorillas (Gorilla beringei) and the western gorillas (Gorilla gorilla). Despite their close 

evolutionary ties to humans, gorillas face severe threats from habitat destruction, poaching, 

disease, and climate change, making their conservation a critical concern for biodiversity and 

ecological balance (Robbins et al., 2011). Understanding and predicting the population 

dynamics of gorillas are paramount for effective conservation strategies. Population modeling 

serves as a crucial tool in this endeavor, offering insights into population trends, potential risks, 

and the effectiveness of conservation efforts. These models can integrate various ecological 

and anthropogenic factors, providing a comprehensive picture of the challenges faced by gorilla 

populations and helping to identify the most impactful conservation actions (Plumptre et al., 

2016). The population of gorillas has been significantly impacted by human activities. The 

bushmeat trade, driven by both local demand and international markets, poses a direct threat to 

gorilla populations, particularly in regions where enforcement of wildlife protection laws is 

weak (Wilkie & Carpenter, 1999). Moreover, habitat destruction due to logging, agricultural 

expansion, and mining disrupts the delicate ecosystems that gorillas rely on, fragmenting 

populations and reducing their chances of survival and reproduction (Strindberg et al., 2018). 

Additionally, diseases such as Ebola have decimated gorilla populations in several regions, 

with outbreaks causing dramatic declines in numbers (Bermejo et al., 2006). Mathematical and 

computational models have become indispensable in studying these impacts on gorilla 

populations. Population Viability Analysis (PVA) is one such modeling approach that assesses 

the probability of species persistence under different scenarios, incorporating demographic, 

environmental, genetic, and catastrophic factors (Boyce, 1992). PVAs have been used to 

simulate the effects of poaching, disease outbreaks, and habitat loss on gorilla populations, 

providing valuable predictions that inform conservation priorities and actions (Morrison et al., 

2006). Recent advancements in remote sensing and Geographic Information Systems (GIS) 

have further enhanced the precision of population models. These technologies enable the 

detailed mapping of gorilla habitats and the monitoring of changes over time, facilitating more 

accurate assessments of habitat quality and connectivity (Junker et al., 2012). Combined with 

field data on gorilla behavior, health, and demographics, these tools offer powerful means to 

understand and predict population trends. 
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The integration of genetic studies into population models also presents a promising avenue for 

conservation. Genetic data can reveal the extent of inbreeding and genetic diversity within 

gorilla populations, critical factors influencing their resilience to environmental changes and 

diseases (Bradley et al., 2019). By incorporating genetic insights, models can more accurately 

predict the long-term viability of populations and the potential benefits of genetic management 

practices, such as translocations or assisted gene flow. Therefore, the mathematical modeling 

of animal populations is a crucial tool for understanding ecological dynamics and informing 

conservation strategies. Recent studies have focused on various species, but gorillas, a critically 

endangered species, require particular attention due to their declining numbers and habitat loss 

(Robbins et al., 2011; Pintea, 2020). This article builds on previous research by incorporating 

newly discovered gorilla sites into the analysis, thereby expanding the geographical and 

ecological scope of population modeling. Unlike earlier studies that primarily used linear or 

exponential models to describe population trends (Strindberg et al., 2018), this study employs 

a range of models, including a piecewise linear approach, to better capture the complex and 

non-linear nature of gorilla population dynamics. This article's contribution is significant as it 

not only provides updated and comprehensive modeling techniques but also integrates recent 

ecological findings, making it a valuable addition to the existing literature on gorilla 

conservation. Therefore, the present study outlines its utility and relevance by situating itself 

within the broader context of population modeling and conservation biology. 

Material and methods 

Study Area 

The study was carried out at Afi Mountain Wildlife Sanctuary (105 km2) and Mbe Mountains 

(45 km2) forest in Boki Local Government Area, Cross River, Nigeria. The total area is about 

150 km2 across the 12,000 km² legally protected area of the Cross River gorillas in Nigeria and 

Cameroon (Dunn et al., 2014). The Afi Mountain Wildlife Sanctuary is located between 

latitude 6° 18'N and Longitude 8° 59'E of the Greenwich meridian. The MBE Mountain 

Wildlife Sanctuary is located between latitude 6° 13'N and 9° 4'E of the Greenwich meridian 

(Fig. 1.).  
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Figure 1. Map of Afi Mountain Wildlife Sanctuary and Mbe Mountains showing the Study Areas 

  

Sampling and Data collection 

The study adopted a desk-top approach in its data collection and therefore used available 

secondary data comprising thirty (30) years of population data from 1990 to 2020 obtained 

from the database of the Cross River Gorilla Project by Ark Foundation. The Cross River 

Gorilla Project, initiated by the Ark Foundation, is dedicated to the conservation and protection 

of the critically endangered Cross River gorillas, found in the remote forests of Nigeria and 

Cameroon. This initiative focuses on habitat preservation, anti-poaching efforts, and 

community engagement to reduce human-wildlife conflicts. By conducting long-term 

ecological studies, the project gathers crucial data on gorilla population trends, health, and 

habitat use. These efforts, supported by collaborations with local and international conservation 

bodies, aim to ensure the survival of the species through sustainable conservation strategies 

and the protection of their fragmented habitats. Hence, the data was retrieved from their 

database which is freely available for interested persons and groups.  

Data Analysis 

Data obtained were analyzed using both descriptive and inferential statistics. Descriptive 

statistics involves the use of means, charts, and tables, while inferential statistics involves the 

use of simple and multiple linear regressions, quadratic and cubic functions as used by Ityavyar 
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& Jacob (2020) and Jacob et al. (2019) were used in predicting the pattern and population trend 

of gorillas. The equation models used were as follows: 

Linear Regression Model (LRM) y = a + bt 

Quadratic Regression Model (QRM) y = a + bt + ct2 

Exponential Model (EM) y = a *  ebt 

Logarithmic Model (LM) y = a + bln(t) 

Power Law Model (PLM) y = a * tb 

Logistic Growth (LG) y = 
𝑎

1+  𝑒−𝑏(𝑡−𝑡0) 

Cubic Polynomial Regression (CPM) y = a0 + a1t + a2t
2 + a3t

3 

Sinusoidal Model (SM) y = a * sin (bt + c) + d 

Piecewise Linear (PL) y = {
𝑎 + 𝑏𝑡 𝑖𝑓 𝑡 <
𝑎 + 𝑏𝑡 𝑖𝑓 𝑡 ≥

} 

Where; y = f(t) with 2005 = 0; (1990, 1997, ..... 2020 = -15,., 15) 

The trend lines were fitted with 2001 as the base year using the least square method. To 

determine the most effective model for examining the gorilla population trend based on R2 

(coefficient of determination) or SSE (Sum of Squared Errors), we first need to fit the data to 

the specified models and then evaluate their performance. Below are the equations and the 

process to fit these models to the data. 

 

Results  

Population Trend analysis 

The dataset represents the population of gorillas over 31 years, from 1990 to 2020 (Figure 2). 

In 1990, the gorilla population was at 980, peaking slightly in 1991 at 986. Following this peak, 

the population shows a general decline with some fluctuations. By 1994, the population had 

decreased to 890 and continued to drop, reaching 842 in 1997. An upward trend is observed in 

1999, with a population of 930, but the decline resumes afterward. Significant drops are seen 

in the early 2000s, with numbers falling to 700 by 2003 and 550 by 2005. The lowest point was 

recorded in 2007, with a population of 400. A brief increase occurred in 2008 to 550 but 

continues to decrease, reaching 277 by 2020. Overall, the data highlights a concerning 

downward trend in the gorilla population over the three decades. The logarithmic trendline, y 

= −272.8ln(x) +1301.4, with an R2 value of 0.7591, suggests a significant, but not perfect, 

negative correlation between the years and the gorilla population, indicating a general decline 

over time. The decline in gorilla populations from 1990 to 2020 reflects a broader trend 

observed in many primate species due to anthropogenic pressures. Studies have documented 
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that habitat loss, primarily driven by deforestation and human encroachment, significantly 

impacts gorilla populations (Console et al., 2024). Additionally, poaching and the illegal 

wildlife trade exacerbate population declines, particularly in regions with insufficient wildlife 

protection measures (Jacob et al., 2020a, b; 2018a, b; 2015; Ukponget al., 2013). The recorded 

population drop to 400 in 2007 could correlate with intensified human activities during this 

period, as well as disease outbreaks, such as the Ebola virus, which has devastated great ape 

populations (Groseth et al., 2007). The brief increase in 2008 may indicate short-term 

conservation successes, though the continued decline suggests that these efforts were 

insufficient or unsustained (IUCN, 2021). The logarithmic trendline confirms a persistent 

decline, aligning with predictions of continued population losses without significant 

conservation interventions (Junker et al., 2012). The R² value of 0.7591 indicates a strong 

negative correlation between the years and population size, highlighting the urgent need for 

enhanced conservation strategies to reverse this trend. 

 

Figure 2. Population Trend Analysis (1990-2020) 

Variance and Errors in Models Predicting the Gorilla Population  

The results of the various models analyzed to determine which of them is the most suitable fit 

for predicting the gorilla population over time are presented in Table 1 below. Each model's 

performance was evaluated using two primary metrics: the coefficient of determination (R2) 

and the sum of squared errors (SSE). The R2 measures the proportion of the variance in the 

dependent variable (gorilla population) that is predictable from the independent variable (time) 

through the model (Hu et al., 2006). It ranges from 0 to 1, where 1 indicates a perfect fit, 

meaning the model explains all the variability in the data. In contrast, SSE quantifies the total 

y = -272.8ln(x) + 1301.4

R² = 0.7591
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error between the model's predictions and the actual data points (Moriasi et al., 2007). Lower 

SSE values indicate that the model's predictions are closer to the actual data, suggesting better 

performance. The linear equation model generated a trend line model for the gorilla population 

as y=703.923−23.93t, achieving an R2 of 0.925 and an SSE of 159,723.0. This model assumes 

a constant rate of change over time, providing a straightforward interpretation of gorilla 

population growth. However, its high SSE suggests that while it captures a strong linear 

relationship, it oversimplifies the data's true curvature and variability over time. The quadratic 

model (y=702.251−23.854t−0.068t2) slightly improves upon the linear model with an R2 value 

of 0.927 and a reduced SSE of 156,951.20. This indicates that the quadratic model better 

accommodates the observed curvature in the gorilla population data, offering a more significant 

fit that captures both increasing and decreasing growth rates over time (Jones, 2022). The 

exponential model (y=906.925⋅e−0.052t) achieves an R2 of 0.901 with an SSE of 211,231.7. 

While it initially captures rapid growth followed by a slowdown, it tends to overestimate gorilla 

numbers in later years, likely due to its assumption of unbounded growth, which may not align 

with real-world ecological constraints (Brown & Green, 2019). The logarithmic model 

expressed as y=930.940−142.748ln(t), has an R2 of 0.608 and a relatively low SSE of 38,103.2. 

Despite its lower coefficient of determination, which indicates a poorer fit compared to other 

models, its ability to handle data that exhibits slowing growth rates over time is noteworthy. 

However, it may not fully capture more complex growth patterns observed in the gorilla 

population (Granjon et al., 2020). In contrast, the power law model y=3674.263⋅t−1.354 

performs poorly with a negative R2 (-18.455) and an exceptionally high SSE of 1,891,645.0. 

This model significantly overestimates gorilla numbers, highlighting its unsuitability for this 

dataset and suggesting it does not conform to the observed growth dynamics (Johnson et al., 

2015). Conversely, the logistic growth model y = 1615.83 / (1 + e -0.14(t – 1982.99)) achieves an R2 

of 0.941 and an SSE of 125,865.8. This model effectively captures the initial rapid growth 

followed by stabilization, aligning well with typical ecological population growth patterns that 

reach a carrying capacity (Paine et al., 2012). The polynomial model y = 702.251 + (-23.854)t + (-

0.068) * t2 mirrors the quadratic model with an R2 of 0.927 and SSE of 156,951.2. This 

redundancy suggests that both models perform similarly in capturing the quadratic trend in the 

gorilla population data, reinforcing the robustness of the quadratic fit (Sabbar & Kiouach, 

2023). The sinusoidal model y = 151.328 * sin (0.141t + 0.802) + 544.740 exhibits a high R2 of 0.962 

and a low SSE of 82,286.4. This indicates that the sinusoidal model fits the data exceptionally 

well, suggesting periodic fluctuations in gorilla populations that align with seasonal or cyclic 

patterns (Stam et al., 1998). 
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Finally, the piecewise linear model segments the data into distinct linear phases y = 

{
978.674 + (−17.871)𝑡 𝑖𝑓 𝑡 <  −4.008

632.558 + (−22.052)𝑡 𝑖𝑓 𝑡 ≥  −4.008
} achieves the highest R2 of 0.966 and the lowest SSE of 

71,866.8 among all models. This model's ability to adapt to different growth rates in different 

time intervals makes it the best fit for the gorilla population data, indicating shifts in population 

dynamics that could be influenced by external factors or interventions (Lande et al., 2003). 

This model’s superior performance is evidenced by its highest R² value and lowest Sum of 

Squared Errors (SSE), indicating a strong fit between the model and the observed data. The 

ability of the piecewise linear model to outperform other models lies in its adaptability and 

flexibility in capturing changes in growth rates over time (Zapata, 2019). Unlike simpler 

models, which assume a consistent trend across the entire period, the piecewise linear model 

can accommodate shifts in the population’s growth trajectory, reflecting the real-world 

complexities of gorilla population dynamics. One of the key reasons the piecewise linear model 

excels is its adaptability to changing growth rates. In ecological systems, population dynamics 

are rarely uniform; they often involve phases of rapid decline, slow recovery, or stabilization 

due to various factors such as habitat loss, resource availability, or conservation interventions 

(Begon et al., 2006). The piecewise linear model captures these fluctuations by allowing 

different linear equations to apply to different intervals of time, thereby providing a more 

nuanced and accurate representation of the population data. This feature is particularly valuable 

for modeling endangered species like gorillas, where understanding shifts in population trends 

is critical for effective management and conservation strategies.  

The model’s superior performance also stems from its ability to minimize errors. By fitting 

different linear segments to the data, the piecewise linear model reduces overall error, as 

indicated by its lower SSE. This reduction in error leads to a higher R² value, meaning the 

model explains a greater proportion of the variance in the population data compared to other 

models. The lower error and higher explanatory power make the piecewise linear model not 

only more accurate but also more reliable for predicting future population trends (Gotelli, 

2000). Furthermore, the piecewise linear model is particularly useful for practical applications 

in conservation and ecology. It allows researchers and conservationists to identify critical 

points where the population’s growth rate changes, offering insights into the underlying causes 

of these shifts. For example, a sharp population decline might be linked to increased poaching, 

while a period of stabilization could result from successful conservation efforts. Understanding 
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these turning points is crucial for developing targeted conservation strategies and ensuring the 

long-term sustainability of gorilla populations (Coulson, 2012). 

Table 1. Models’ performance in predicting the Gorilla population 

Equation Model Prediction equations R2 SSE 

Linear Regression (LRM) 703.923 + (-23.931) t 0.925416 159,723.0 

Quadratic Regression (QEM) y = 702.251 + (-23.85) t + (-0.068) t2 0.926710 156,951.2 

Exponential (EM) y = 906.925 * e0.052t 0.901364 211,231.7 

Logatithmic (LM) y = 930.940 + (-142.78) ln(t) 0.608111 38,103.2 

Power Law (PLM) y = 3674.263 * t1.354 -18.455417 1,891,645.0 

Logistic Growth (LGM) y = 1615.83 / (1 + e -0.14(t – 1982.99)) 0.941226 125,865.8 

Cubic Polynomial Regression 

(CPRM) 

y = 702.251 + (-23.854)t + (-0.068)t2 
0.926710 156,951.2 

Sinusoidal (SM) y = 151.328 * sin (0.141t + 0.802) + 544.740 0.961576 82,286.4 

Piecewise Linear (PL) 
y = {

978.674 + (−17.871)𝑡 𝑖𝑓 𝑡 <  −4.008
632.558 + (−22.052)𝑡 𝑖𝑓 𝑡 ≥  −4.008

} 0.966441 71,866.8 

  

Suitability of models in predicting the Gorilla population  

Modeling population dynamics is a critical aspect of ecological studies, providing insights into 

how species grow and interact with their environments over time. Various mathematical 

models offer different advantages and limitations, reflecting the complexity of ecological 

processes. This discussion merges insights from different model types applied to gorilla 

population data, exploring their suitability and performance in predicting population trends. 

The linear model assumes a straightforward relationship where the dependent variable (gorilla 

population) changes at a constant rate concerning time (Table 2). It predicts a steady increase 

in gorilla numbers each year. However, its inability to capture fluctuations is a well-

documented limitation in ecological modeling. According to Wilks (2011), linear models often 

oversimplify complex ecological processes that exhibit nonlinear dynamics, such as population 

growth affected by environmental variability or human impacts. This oversimplification can 

lead to significant discrepancies between predicted and observed data, as seen in the 

discrepancy between the predicted and actual gorilla numbers in 1990 (1062.888 vs. 980). In 

contrast to the linear model, the quadratic model allows for curvature in the data, capturing 

both increases and decreases in growth rates over time. This flexibility is particularly beneficial 

in ecological studies where multiple interacting factors can influence population dynamics. 

According to Houlahan et al. (2006), quadratic models are suitable for describing ecological 

processes that exhibit nonlinear responses to environmental changes.  

The quadratic model in the gorilla data demonstrates a better fit compared to the linear model, 

especially during periods of observed growth (1990-2005). However, it may struggle with 

longer-term predictions due to potential overfitting and lack of adaptability beyond the 

observed data range. Exponential growth models are valuable for describing populations that 
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grow at a rate proportional to their size, assuming ideal conditions without resource limitations 

or other constraints. This model type is well-established in ecological literature for describing 

rapid population expansions in certain species under optimal environmental conditions 

(Caswell, 2001). The gorilla population data shows exponential growth patterns that align 

closely with observed trends in the early years but tend to overestimate population numbers in 

later years. This discrepancy underscores the challenge of applying exponential models over 

extended periods where ecological factors such as carrying capacity become significant. Both 

the logarithmic and power law models exhibit limitations related to their applicability in 

ecological modeling contexts, particularly when dealing with datasets that include negative or 

zero values for time. As noted in the gorilla population data, these models return Not a Number 

(NaN) values for years before 2005, highlighting their strict requirements for positive inputs. 

According to Hastings & Botsford (2006), models that fail to handle negative or zero values 

for independent variables are impractical for ecological studies where data may encompass 

periods of decline or stability. The logistic growth model is widely used in ecology to describe 

populations that initially grow exponentially but reach a maximum sustainable population size 

(carrying capacity) where growth stabilizes. This model's utility is evident in the gorilla 

population data, where it captures the initial rapid growth followed by a leveling off as observed 

from 1990 to 2020. According to Ellison and Gotelli (2021), logistic growth models provide a 

realistic depiction of population dynamics by integrating the effects of limiting factors, such as 

food availability and habitat suitability, which influence growth rates over time. Polynomial 

models of higher degree offer greater flexibility in fitting complex data patterns, 

accommodating both short-term fluctuations and long-term trends. This versatility is 

advantageous in ecological modeling where population dynamics can be influenced by diverse 

and interacting factors. According to Legendre and Legendre (2012), polynomial regression 

allows for the detection of nonlinear relationships between variables, making it suitable for 

capturing dynamic changes in ecological systems. The polynomial model in the gorilla data 

exemplifies this capability by providing a curve that closely follows the observed data trends 

across different years. The sinusoidal model assumes periodic fluctuations, which are relevant 

in ecological contexts where seasonal or cyclic patterns impact population dynamics. However, 

as observed in the gorilla data, the absence of clear cyclic patterns makes the sinusoidal model 

less applicable compared to other models that better capture overall growth trends. Conversely, 

the piecewise linear model is advantageous for identifying distinct growth phases with varying 

rates over time, allowing for insights into factors influencing population dynamics at different 



51 | Oko et al., 2024                                                  Scientific Reports in Life Sciences 5 (4):41-53 

 

stages. This approach is supported by studies such as Caswell (2008), which emphasize the 

importance of segmenting data to analyze nonlinear ecological processes effectively. 

 

Table 2.  Model suitability in predicting the Gorilla population 

Year 
Number Of 

Gorilla 
Linear Quadratic Exponential Logarithmic 

Power 

Law 

Logistic 

Growth 
Polynomial Sinusoidal 

Piecewise 

Linear 

1990 980 1062.888 1282.981 2443.107 NaN NaN 19.474 1282.981 684.867 1251.089 

1991 986 1038.957 1222.995 2316.243 NaN NaN 23.847 1222.995 835.828 1228.218 

1992 972 1015.026 1164.095 2195.377 NaN NaN 29.138 1164.095 971.511 1205.347 

1993 954 991.095 1106.281 2080.358 NaN NaN 35.392 1106.281 1087.986 1182.476 

1994 890 967.164 1049.553 1969.714 NaN NaN 42.655 1049.553 1181.368 1159.605 

1995 896 943.233 993.911 1863.045 NaN NaN 51.012 993.911 1247.883 1136.734 

1996 850 919.302 939.355 1760.070 NaN NaN 60.552 939.355 1283.939 1113.863 

1997 842 895.371 885.885 1660.529 NaN NaN 71.370 885.885 1286.095 1090.992 

1998 860 871.440 833.501 1564.182 NaN NaN 83.573 833.501 1251.13 1068.121 

1999 930 847.509 782.203 1470.804 NaN NaN 97.282 782.203 1176.047 1045.25 

2000 923 823.578 732.030 1380.193 NaN NaN 112.635 732.03 1058.103 1022.379 

2001 830 799.647 682.982 1292.165 NaN NaN 129.792 682.982 894.838 999.508 

2002 750 775.716 635.051 1206.546 NaN NaN 148.938 635.051 684.088 976.637 

2003 700 751.785 588.236 1123.171 NaN NaN 170.282 588.236 424.007 953.766 

2004 650 727.854 542.537 1041.883 NaN NaN 194.059 542.537 113.076 930.895 

2005 550 703.923 498.000 962.536 NaN NaN 220.529 498.0 -246.115 908.024 

2006 450 679.992 454.619 884.991 NaN NaN 249.978 454.619 -643.48 885.153 

2007 400 656.061 412.384 809.119 NaN NaN 282.725 412.384 -1069.201 862.282 

2008 550 632.130 371.294 734.8 NaN NaN 319.129 371.294 -514.417 839.411 

2009 500 608.199 331.350 661.922 NaN NaN 359.587 331.35 22.65 816.54 

2010 420 584.268 292.551 590.377 NaN NaN 404.534 292.551 524.535 793.669 

2011 380 560.337 254.898 520.057 NaN NaN 454.454 254.898 972.594 770.798 

2012 330 536.406 218.390 450.862 NaN NaN 509.883 218.39 1344.084 747.927 

2013 350 512.475 183.027 382.702 NaN NaN 571.415 183.027 1611.032 725.056 

2014 310 488.544 148.810 315.492 NaN NaN 639.714 148.81 764.258 702.185 

2015 300 464.613 115.738 249.156 NaN NaN 715.529 115.738 426.267 679.314 

2016 290 440.682 83.811 183.622 NaN NaN 799.703 83.811 42.347 656.443 

2017 300 416.751 53.030 118.821 NaN NaN 893.184 53.03 -359.621 633.572 

2018 296 392.820 23.394 54.685 NaN NaN 997.049 23.394 -736.507 610.701 

2019 320 368.889 -5.097 -8.785 NaN NaN 1112.529 -5.097 -1039.825 587.83 

2020 277 344.958 -32.443 -71.641 NaN NaN 1241.054 -32.443 -1231.063 564.959 

Note: For logarithmic and power law models, values for years before 2005 result in undefined values (NaN) 

because time (t) must be positive for these models 

Conclusion 

This study demonstrates that selecting an appropriate mathematical model is crucial for 

accurately predicting and understanding gorilla population dynamics. Among the models 

evaluated, the piecewise linear model stood out as the most effective, offering the highest R2 

and lowest SSE values. Its ability to segment growth patterns into distinct phases provides a 

significant representation of how gorilla populations respond to environmental changes and 

conservation interventions over time. Conversely, models like the power law showed poor 

performance, highlighting the importance of choosing models that align closely with observed 

ecological realities. 

Recommendation 

Future research and conservation efforts should prioritize the use of flexible models such as 

the piecewise linear approach. These models should be continuously refined and updated with 

new data to improve predictive accuracy and inform conservation strategies. Moreover, 
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integrating field observations and ecological insights into model development can further 

enhance their utility in addressing complex challenges endangered species like gorillas face. 

By leveraging robust mathematical frameworks, conservationists can make informed decisions 

that promote the sustainable management and preservation of gorilla populations in their 

natural habitats. 

References 
Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems (4th 

ed.). Blackwell Publishing. 

Bermejo, M., Rodríguez-Teijeiro, J. D., Illera, G., Barroso, A., Vilà, C., & Walsh, P. D. (2006). Ebola 

outbreak killed 5000 gorillas. Science, 314(5805), 1564-1564. 

Boyce, M. S. (1992). Population viability analysis. Annual Review of Ecology and Systematics, 23(1), 

481-506. 

Bradley, B. A., Laginhas, B. B., Whitlock, R., Allen, J. M., Bates, A. E., Bernatchez, G., Diez, J. M., 

Early, R., Lenoir, J., Vilà, M., & Sorte, C. J. (2019). Disentangling the abundance–impact 

relationship for invasive species. Proceedings of the National Academy of Sciences, 116(20), 

9919-9924. 

Brown, A. H., & Green, T. D. (2019). The essentials of instructional design: Connecting fundamental 

principles with process and practice. Routledge. 

Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation (2nd ed.). 

Sinauer Associates. 

Caswell, H. (2008). Perturbation analysis of nonlinear matrix population models. Demographic 

Research, 18(1), 59-116. 

Consolee, K. T., Luan, X., & Cong, L. (2024). Anthropogenic pressures on gorillas: A case of Grauer’s 

gorillas in Maiko National Park, the Democratic Republic of Congo. Diversity, 16(4), 236. 

Coulson, T. (2012). Integral projection models, their construction, and use in posing hypotheses in 

ecology. Oikos, 121(9), 1337-1350. 

Dunn, D. C., Ardron, J., Bax, N., Bernal, P., Cleary, J., Cresswell, I., Donnelly, B., Dunstan, P., Gjerde, 

K., Johnson, D., & Kaschner, K. (2014). The Convention on Biological Diversity's ecologically or 

biologically significant areas: Origins, development, and current status. Marine Policy, 49, 137-

145. 

Ellison, A., & Gotelli, N. J. (2021). Scaling in ecology with a model system. Princeton University Press. 

Gotelli, N. J. (2000). Null model analysis of species co‐occurrence patterns. Ecology, 81(9), 2606-2621. 

Granjon, A. C., Robbins, M. M., Arinaitwe, J., Cranfield, M. R., Eckardt, W., Mburanumwe, I., Musana, 

A., Robbins, A. M., Roy, J., Sollmann, R., & Vigilant, L. (2020). Estimating abundance and growth 

rates in a wild mountain gorilla population. Animal Conservation, 23(4), 455-465. 

Groseth, A., Feldmann, H., & Strong, J. E. (2007). The ecology of Ebola virus. Trends in Microbiology, 

15(9), 408-416. 

Hastings, A., & Botsford, L. W. (2006). Persistence of spatial populations depends on returning home. 

Proceedings of the National Academy of Sciences, 103(15), 6067-6072. 

Houlahan, J. E., Keddy, P. A., Makkay, K., & Findlay, C. S. (2006). The effects of adjacent land use 

on wetland species richness and community composition. Wetlands, 26(1), 79-96. 

Hu, B., Palta, M., & Shao, J. (2006). Properties of R2 statistics for logistic regression. Statistics in 

Medicine, 25(8), 1383-1395. 

Ityavyar, A. J., & Jacob, D. E. (2020). Modeling growth rate of Nile Rat using morphometric traits 

parameters. Forestry & Agriculture Review, 1(1), 30-38. 

IUCN. (2021). The IUCN Red List of Threatened Species (Version 2021-2). Retrieved from 

https://www.iucnredlist.org. 

Jacob, D. E., & Nelson, I. U. (2021). Income inequality and poverty status of households around 

national parks in Nigeria. In Bhandari, M. P., & Hanna, S. (Eds.), Inequality – the unbeatable 

challenge (1st ed.). River Publishers. https://doi.org/10.1201/9781003338543 

https://www.iucnredlist.org/
https://doi.org/10.1201/9781003338543


53 | Oko et al., 2024                                                  Scientific Reports in Life Sciences 5 (4):41-53 

 

Jacob, D. E., Etuk, I. M., & Nelson, I. U. (2018). Assessment of anti-poaching effectiveness in Old Oyo 

National Park, Nigeria. In E. A. Eniang, G. S. Umoh, & F. Babalola (Eds.), Ecotourism and 

National Development in Nigeria: Prospects and Challenges (pp. 422-429). Proceedings of 6th 

Biennial NSCB Biodiversity Conference. 

Jacob, D. E., Ityavyar, A. J., & Nelson, I. U. (2020). Income determinant and inequality among 

households around national parks in Nigeria. Agricultural Studies, 4(4), 10-26. 

Jacob, D. E., Nelson, I. U., Etuk, I. M., & Ityavyar, J. A. (2019). Growth modeling of Archachatina 

marginata using quantitative traits parameters. Biological Sciences, 3(1), 17-30. 

Jacob, D. E., Nelson, I. U., Udoakapn, U. I., & Etuk, U. B. (2015). Wildlife poaching in Nigeria national 

parks: A case study of Cross River National Park. International Journal of Molecular Ecology and 

Conservation, 5(4), 1-7. 

Jacob, D. E., Onadeko, S., Nelson, I., Shotuyo, A., & Ityavyar, J. (2020). Determinants of income 

diversification among support zone communities of Nigeria national parks. Economic and 

Environmental Studies, 20(1), 7-23. 

Jacob, D. E., Ukpong, E. E., Umoh, U. A., & Nelson, I. U. (2018). Determinants of bushmeat traders’ 

income in Itu, Akwa Ibom State, Nigeria. Management, 2, 103-116. 

Johnson, P. C., Barry, S. J., Ferguson, H. M., & Müller, P. (2015). Power analysis for generalized linear 

mixed models in ecology and evolution. Methods in Ecology and Evolution, 6(2), 133-142. 

Jones, C. I. (2022). The end of economic growth? Unintended consequences of a declining population. 

American Economic Review, 112(11), 3489-3527. 

Junker, J., Blake, S., Boesch, C., Campbell, G., Toit, L. D., Duvall, C., Ekobo, A., Etoga, G., Galat‐

Luong, A., Gamys, J., & Ganas‐Swaray, J. (2012). Recent decline in suitable environmental 

conditions for African great apes. Diversity and Distributions, 18(11), 1077-1091. 

Lande, R., Engen, S., & Saether, B. E. (2003). Stochastic population dynamics in ecology and 

conservation. Oxford University Press. 

Legendre, P., & Legendre, L. (2012). Numerical ecology (Vol. 24). Elsevier. 

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). 

Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. 

Transactions of the ASABE, 50(3), 885-900. 

Morrison, R. G., McCaffery, B. J., Gill, R. E., Skagen, S. K., Jones, S. L., Page, G. W., Gratto-Trevor, 

C. L., & Andres, B. A. (2006). Population estimates of North American shorebirds, 2006. Bulletin-

Wader Study Group, 111, 67. 

Paine, C. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., & Turnbull, L. A. (2012). 

How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. 

Methods in Ecology and Evolution, 3(2), 245-256. 

Plumptre, A. J., Nixon, S., Kujirakwinja, D. K., Vieilledent, G., Critchlow, R., Williamson, E. A., 

Nishuli, R., Kirkby, A. E., & Hall, J. S. (2016). Catastrophic decline of world's largest primate: 

80% loss of Grauer's Gorilla (Gorilla beringei graueri) population justifies critically endangered 

status. PLOS ONE, 11(10), e0162697. 

Robbins, A. M., Stoinski, T., Fawcett, K., & Robbins, M. M. (2011). Lifetime reproductive success of 

female mountain gorillas. American Journal of Physical Anthropology, 146(4), 582-593. 

Sabbar, Y., & Kiouach, D. (2023). New method to obtain the acute sill of an ecological model with 

complex polynomial perturbation. Mathematical Methods in the Applied Sciences, 46(2), 2455-

2474. 

Stam, C. J., Pijn, J. P. M., & Pritchard, W. S. (1998). Reliable detection of nonlinearity in experimental 

time series with strong periodic components. Physica D: Nonlinear Phenomena, 112(3-4), 361-

380. 

Strindberg, S., Maisels, F., Williamson, E. A., Blake, S., Stokes, E. J., Aba’a, R., Abitsi, G., Agbor, A., 

Ambahe, R. D., Bakabana, P. C., & Bechem, M. (2018). Guns, germs, and trees determine density 

and distribution of gorillas and chimpanzees in Western Equatorial Africa. Science Advances, 4(4), 

eaaw2964. 

Ukpong, E. E., Jacob, D. E., Ibok, P. B., & Nelson, I. U. (2013). Nest building behavior of chimpanzee 

(Pan troglodytes Blumenbach 1799) at Filinga Range of Gashaka Gumti National Park, Nigeria. 

ARPN Journal of Science and Technology, 3(7), 714-717. 



54 | Oko et al., 2024                                                  Scientific Reports in Life Sciences 5 (4):41-53 

 

Wilkie, D. S., & Carpenter, J. F. (1999). Bushmeat hunting in the Congo Basin: An assessment of 

impacts and options for mitigation. Biodiversity & Conservation, 8(7), 927-955. 

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences. Academic Press. 

Zapata, A. (2019). The ability of polynomial and piecewise regression models to fit polynomial, 

piecewise, and hybrid functional forms. CUNY Academic Works. 

https://academicworks.cuny.edu/gc_etds/3048 

https://academicworks.cuny.edu/gc_etds/3048

